
Welcome Screen

Read Upload Screen

Alaska: Complete, Automated RNA-seq Analysis

New Project

Load Project
2

1

1 Clicking this button creates a new project.

User’s Perspective: proceed to next step 

Command: <PATH TO: request.sh>/Request.sh new_proj
Correct output: 

ID of new project

Some text & info about uploading read files via FTP
Also need to make it clear that each sample must be in 

separate folders.
In the meantime, Raymond please allow us to access the 
“projects” folder under the Alaska root directory via FTP.

Upload �nished
1

Portal has to remember the ID of new project because it will be used in all downstream processes.

1 Clicking this button indicates the user has finished uploading their read files to our server.

User’s Perspective: proceed to next step 

Command: <PATH TO: request.sh>/Request.sh infer_samples --id <PROJECT_ID>
Correct output:

Note: The portal has to show a loading circle while the server is unpacking the reads and
  calculating the MD5 checksums. (The loading screen is shown below). 

Loading Screen

Some text & info about uploading read files via FTP
Also need to make it clear that each sample must be in 

separate folders.
In the meantime, Raymond please allow us to access the 
“projects” folder under the Alaska root directory via FTP.

Upload �nished

Useful text here to indicate unpacking & MD5 calculation 
progress.

1 This field shows some useful text about read unpacking and MD5 calculation

User’s Perspective: changes from getting raw reads to calculating MD5 checksums
     to successfully retrieved raw reads

Note: The text changes according to the most recent output of the command run in Read Upload Screen.
  The window automatically proceeds to the next step when the command finishes successfully.
  (Assume all command terminations are successful terminations for now.)

1

Metadata Input Screen

Project ID:     <Project_ID>
Project Title:
Summary:

Contributor(s):

SRA Center Code:
Email:
...
...
...

Experiment Design

Samples

Add contributor

1-factor 2-factor

Sample ID: <Sample_ID>
Sample Title:
Description:

Contributor(s):

Organism:
Source:
Characteristics:

...

...

...

This is my control:
Control Characteristic(s): 
Read Type:
Index:
Length:
Standard Dev:
Bootstraps:
Reads & MD5 Checksums:

Single-end Paired-end

Read File MD5 Checksum

Add contributor

Sample ID: <Sample_ID>
Sample ID: <Sample_ID>
Sample ID: <Sample_ID>

1
2
3

4

5
6

7

Add characteristic

Category Details

8

9
10

11

12
13

14

15
16

17
18

19
20

21

22

23

Submit
24

1 This text label shows the project ID.

User’s Perspective: unedtiable
Which field in JSON: id

This textfield is for the user to input a project title.

User’s Perspective: editable
Which field in JSON: meta - title

This textfield is for the user to input a project summary.

User’s Perspective: editable
Which field in JSON: meta - summary

This textfield is for the user to input contributor(s).

User’s perspective: editable
Which field in JSON: meta - contributors
Note: Clicking the button Add contributor adds another textfield directly below the original textfield.

     Same process as 2 and 3.

These radio buttons are for the user to choose their experimental design.

User’s perspective: choose between two radio buttons
Which field in JSON: design
Note: 1-factor saves to the integer 1, and 2-factor saves to the integer 2 in JSON

This text label shows the sample ID.

User’s Perspective: uneditable
Which field in JSON: samples - <Sample_ID> - id
Note: Each sample is organized in a ribbon-like fashion. Each sample gets their own ribbon.
  Here is an example of what I think this should look like.

     Similar to 2-6. Each field maps to their corresponding field in meta field.

This table is for the user to input the sample characteristics.

User’s Perspective: editable (including adding/removing rows)
Which field in JSON: samples - <Sample_ID> - meta - characteristics
Note: Data in the table is saved as a hash with Category as the keys and Details as the values.
  Here is an example of what I think this should look like.

This checkbox is for the user to select their control.
If the sample is their control sample, they would check this box.

User’s Perspective: editable
Which field in JSON: ctrl_ids (explained further below)

These dropdowns are for the user to select what their controlling chracteristic(s) is(are).

User’s Perspective: editable
Which field in JSON: ctrl_ftrs (explained further below)
Note: IF    is 1-factor: only the first dropdown is active.
  IF   is 2-factor: both dropdowns are active & two di�erent characteristics must be selected 

These radio buttons are for the user to choose their read type.

User’s Perspective: editable
Which field in JSON: samples - <Sample_ID> - type
Note: Single-end saves to the integer 1, and paired-end saves to the integer 2 in JSON

This dropdown is for the user to specify which transcriptome to use.

User’s Perspective: editable
Which field in JSON: samples - <Sample_ID> - idx
Note: The choices of this dropdown are the list of .idx files in <PATH TO: root folder>/idx

This textfield is for the user to input the read fragment length.

User’s Perspective: editable
Which field in JSON: samples - <Sample_ID> - length
Note: Data validation is needed when the user provides input to this textfield.
  (I’ll specify this in a separate time.)

This textfield is for the user to input the standard deviation of the fragment lengths.

User’s Perspective: editable
Which field in JSON: samples - <Sample_ID> - stdev
Note: Data validation is needed when the user provides input to this textfield.
  (I’ll specify this in a separate time.) 

This textfield is for the user to specify the number of bootstraps to perform.

User’s Perspective: editable
Which field in JSON: samples - <Sample_ID> - bootstrap_n
Note: Data validation is needed when the user provides input to this textfield.
  (I’ll specify this in a separate time.)

This table lets the user verify the MD5 checksums of their reads.

User’s Perspective: uneditable
Which field in JSON: samples - <Sample_ID> - reads AND samples - <Sample_ID> - chk_md5
Note: The reads and chk_md5s are paired by order (first in reads with first in chk_md5, etc.)

Other sample ribbons containing the same stu� as 8-22.

This button submits all input data.
User’s Perspective: If verification succeeds: proceed to next step
    If verification fails: return the user to data input & highlight which fields failed verification

Clicking Submit saves all input as JSON to <PATH_TO: root folder>/projects/<Project_ID>/_temp as
 <Project_ID>.json
Then, issues the following command: <PATH TO: request.sh>/Request.sh set_proj --id <PROJECT_ID>
Correct output:

   (This is when verification succeeds.)
   (I’ll send an update for when verification fails.)

2

3

4

5

7

8

9

14

15

16

17

18

19

20

21

22

23

6

10 11 12 13

These indicate that there may be more fields in the future.

24

7
7

7

Notes for ctrl_ids and ctrl_ftrs:
- ctrl_ids is saved as a list of all Sample IDs that have the This is my control checkbox checked.
- ctrl_ftrs is saved as a hash of the Category-Details pair(s) chosen in 16

15 16

Data Review Screen

Simply for the user to review their input data and check if 
everything’s right. Displays the same information as the 

data input form, but without any editable fields.
Nothing occurs server-side.

Finalize
1

Clicking this button finalizes the project.

User’s Perspective: Move on to next step.

Command: <PATH TO: Request.sh>/Request.sh finalize_proj --id <Project_ID>
Correct output:

1


